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Abstract—The steady, axisymmetric flow of a vertically stratified viscous fluid over a fixed sphere is
considered in a uniform gravity field. Analytical solutions are obtained by the singular perturbation
technique valid for small (modified) Grashof numbers. Two cases are considered, viz. when the sphere is
either thermally insulated or when its surface temperature is maintained constant equal to that of the fluid
occupying the diametral plane. Streamlines are shown graphically in an axial plane for the flow near the
sphere. It is found that for the thermally insulated sphere, the flow is like the one about a stationary sphere in
a rotating fluid, i.e. the inflow near the equator changes into an outflow at the poles, the transition occurring
at an angle of 54.5° measured from the poles. For the isothermal sphere, the streamlines are similar to those of
a uniformly spinning sphere in a fluid at rest.

NOMENCLATURE

All primed quantities are dimensional; all unprimed
quantities are dimensionless. Subscripted terms with m
denote their corresponding values at the diametral
plane (y' = 0).

d, radius of the sphere;

3 B",
» Dys

3

set of arbitrary constants;

g, acceleration of gravity;
G, square root of modified Grashof number
(B at AT, /dy)} 2

Jo, J,,  Bessel function of the first kind and of
order zero and one respectively;

k', thermal conductivity;

P, Prandtl number;

P, Legendre polynomials of the first kind
and order n;

0, 0., amount of heat absorbed by the lower
and
upper hemispheres respectively;

0, added vertical heat flux due to the sphere;

F,r, radial coordinate r = r'/d’;

s, steepness parameter defined as
12d'(d T,,/dy’)} divided by the
temperature difference between the
sphere
and the fluid occupying the diametral
plane; .

T, T, temperature, T’ = T,,+ d'(d T, /dy')T;

dT.,/dy, constant temperature gradient, describ-
ing
the constant stratification;

v,, U, r-component of velocity, v, = v,d'/VG;

Vi Uy 6-component of velocity, v, = v,d'/V'G;

A y =r'cosB,y=y/d (=rcosf/d).

Greek symbols

o, thermal diffusivity;
B, volumetric coefficient of thermal
expansion;

0, colatitude or polar angle measured from
the upward vertical § = 0;

0, density;

v kinematic viscosity;

<
&

Stokes stream function y = ¢'/Gv'd’;
& = —1forisothermal sphereand é = 0.5
for thermally insulated sphere.

gl

1. INTRODUCTION

FREE convection heat transfer from spheres at low
Grashof numbers has recently drawn considerable
interest. Analytical studies involving spherical geomet-
ries have been presented by Mahony [1], Mack and
Hardee [2], Hossain and Gebhart [ 3] and Fendell [4].
A number of experimental investigations at small and
large Grashof numbers have also been reported in the
literature [5-10]. Eichhorn et ul. [11] performed
experiments on natural convection from isothermal
spheres and cylinders immersed in a thermally stra-
tified fluid and presented heat-transfer data and visual
observations of the flow field. Of interest to us is their
qualitative description of the behavior of laminar
plumes from isothermal spheres in terms of a steepness
parameter s.

Theresults presented in this paper correspond to the
sphere problem investigated by Eichhorn ez «l. [11] at
small values of G when s = . Theoretical solutions
are obtained by the singular perturbation technique up
to the second power in G for the isothermal and
thermally insulated sphere. Streamlines for the isother-
mal sphereindicate that theinflow at the poles changes
into an outflow near the equator, similar to the flow for
a rotating sphere in a fluid at rest. Although the
photograph presented by Eichhorn et al. for s = 0 in
their Fig. 6 is true for large Grashof numbers, we find
that the streamlines sketched in this paper are in
qualitative agreement with their results. For thermally
insulated spheres, the flow lines are similar to those on
a stationary sphere in a rotating fluid (Singh [12]). Itis
thus shown that there exists an analogy between
rotating and thermally stratified fluid flows as de-
scribed by Yih [13] and Veronis [ 14].
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2. FORMULATION

We consider an otherwise undisturbed viscous fluid
having a density distribution which varies slightly in
the vertical but is constant in horizontal planes. A
sphere is introduced which is either thermally in-
sulated or whose surface temperature is maintained
constant equal to that of the fluid at infinity in the
(horizontal) diametral plane. The Navier-Stokes
equations for steady, axisymmetric motion are (see
Mack and Hardee [2] and Hossain and Gebhart [3]):

Dy = —Grsin()(sin@%—z-i-sors—egg)
rouno(G -3 ) (g )
where

18/, 10 2
v2=_m_(t_ ___m-(' 2
2o\ o )+ rama ‘Smeao)

The dimensionless velocity components are related to
¥ as given by the following

_ oy/a0

o8 - _ —oyjor
T rsin®’

7 rsing

. ®3)
In the above equations, the Boussinesq approximation
has been made (see Spiegel and Veronis [15]).
' - p:" 4 i ’
Lt —p(r-T3)

m

T =T,+uadT,/dy)T(4)

The boundary conditions are
Yy=0y/or=0,T=00rdT/or=0atr=1 (5)
Vy/r—0, T-rcosf(ory) as

The flow depends on two parameters G (square root of
modified Grashof number) and P (Prandtl number).
We attempt to solve the above system (1) and (2)
subject to conditions (5) and (6}in ascending powers of
G [P fixed] but a uniformly valid solution for small
values of G does not exist (Kaplun and Lagerstrom
[16] and Proudman and Pearson [17]). The Stokes
solution of (1) and (2) valid near the sphere, is obtained
by satisfying the conditions (5). The Oseen approxi-
mation satisfies the conditions (6) and is true at
infinity. The undetermined constants of the two so-
lutions are evaluated by the matching technique.

r—o. (6)

3. SOLUTION
(1) Stokes expansion
For r >~ O(1), we assume an expansion of the form
Y=Y, )+ Gy, (r, )+ G, (r, )+ ... (7)
T=Tyr0)+GT(r, )+ G T(r, )+ ... (8)
and substitute into equations (1) and (2). Since ¥ and

Oyr/0r vanish both at r =1 and r = o0, i, is zero
throughout. By similar arguments T, Ty, ..., and y,,
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¥4, ... etc. are zero. For T, equation (2) gives

VT, =0 9
whose solution satisfying (5) and in view of (6) is

T0=Acos()(r+%), (10)

where § = —1 for isothermal sphere (i.e. T, =0 at r
= 1}and é = 0.5 in case of thermally insulated sphere
(0Ty/0r =0 atr =1). For ¢, we obtain from (1)

D*ys, = 342 4sin? O cos O/r. (11)
Solution of (11), such thaty, hasadoublezeroatr = 1
is (Proudman and Pearson [17])

l/’l —_—i:Bn[(2n~1)rn+3_(2n+1)rn+l+2r—n+2]
1
+C[2rt ' ~2n+1)r " +(2n
—1)r™"]}Qu(cos 0)

+(A%5sin?Bcos 8/8r2)(r* — 1) (12)

where

Qa(u) = (13)

[ 1 Py (p)dp
and P, are the Legendre polynomials of the first kind.
The particular solution in (12} is such that Ay, /r does
not vanish as » approaches infinity. And hence (12)
violates the condition (6). The reason for this break-
down is that inertia and viscous terms become com-

parable at large values of r.

(i) Stretched variables und Oseen expunsion

The inertia and viscous terms far away from the
sphere are of the order of {Fy'f(dT, dy')ir*} and
{(V[rtg' BT dy' )]V 3/r} respectively. Hence their
ratio is 0{r*[a*g' B (dT,/dy')]**/v'}, ie. at infinity

r2G ~ O(1). (14)
Equation (14) suggests for the Oseen’s variables
r=p/G"?, T=x/G'?, =HGY (15)

in terms of which the governing equations (1} and (2)
become

. . .0x cosfox
DYH = — smﬂ(smﬁ— =
! P dp + P 60)
. 0H ¢ 0H ¢ D*H
+sm0(———————— (-’—‘—
.00 6p  dp 69,) \pzsinzﬁ,) (16)
2, P ((’)’Iié_x OH 0x 17
»7 7 pZsin@ \ 06 dp ap%) a7
where
2 O 18 cotfd
” apz p2692 pz 00
1 ¢/ ,90 1 0 0
Ve o ) o D (ine )
"= ap(” ap,)+p2sineao Smgaa,)
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The conditions (5) and (6) are

H=¢Hjgp=0, x=0 or dx/dp=0,
=G”2,
VH/p—>0, x—pcosf as p— 0.

at p
(18)

(19)

The Oseen expansion is assumed as

x = xolp, N +£1(G)x,(p, ) +/{G)x,(p, )+ ...  (20)
H = Holp, 0)+f1(G)H (p, ) +/2(G)H,(p, 8)+ ... (21)
such that £, ,(G) = OL£,(G)}, n = 1,2,... . The lead-
ing terms of the Oseen solution, on account of (19) are

Hy=0, xq=pcosf. (22)

On substituting (20) and (21) into (16} and (17) with
(22), we get for the coefficients of f,(G)

ax, coseax,‘
dp “p 86

_ P (. 8H, cosfdH,
bix ’_psinG(Slne p e g 2

DiH, = -psm(?(sm& ) (23)

). 24)

Equations (23) and (24) are transformed into cylindri-
cal polar coordinates defined by & = psinf,p
=p osfas

8t 18 o ox,
(55_2 m*@;)”‘ % ®
18 (00 & P&H,
éaé(‘f 2t e i @

The solution of (25) and (26} is obtained by Hankel
transform. We define

£, =j ExJolAE)dE, x, = r»‘ti,.fo(lé)dit,
0 P
@7

H = J; HJ,(A&)dE, H, = J; }.fﬁ,.]l().é)dl.
(28)
Equations (25)-(28) give (see Singh [12])

Z w W(A)exp (— o, o(AE)dA,

3

Z J'wiiEn(i)eXP(*a«n)J;(lzf)d»’- (30
4]

29)

where J, and J, are the Bessel functions of first kind
and of order zero and unity respectively. D, and E_ are
constants related by

AD, (L) = jAPA2YPE(A) (31}
02 = A4 (PiY)3, n=1,23 (32)
and
L. —14./3F
(115‘12’]3) = (I’_—"‘E"‘\L)
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(iii) Matching the Stokes and Oseen solutions
On writing equation (10)in terms of Oseen variables
defined by (15), its contribution to x is seen to be

G¥?
x~A(p+ - )cose. (33)
Comparing (33) with (20) and (22), we find
A=1, filG)= G (34)

From (33)it follows that the constants D,(4) should be
such that when ¢ and 5 tend to small values of order
unity, x, ~ cos8/p>. It is well known (Gradshteyn
and Ryzhik [18])

cos 9

L iny v 1
R

If we assume

it can be shown that the integral in (29) becomes a
particular case of (35) and x, ~ §cos 8/p®. To prove
this, exp(—a,n) is expanded in a Taylor series such
that (a,n) ~ (An) as

exp(—a,1) = exp(—z)+ (e, —2)[exp(—z)}

+ (at, 1 —z)*[exp(—2)]"/2! + (@, ~ z)*[exp (— 2)]""/3!
., (3T

where dashes denote differentiation with respect to z

and Ay = z. Also

(PA)'3
5z T

@R, P
gis I ties T

a"=l{i + %(38)

P}."' 1/3
exp(=a,n) =exp(—2) + {E2 1

(PA2y1 P
”T}f Ry 16&“ %Z[exp( 2}]

(P22
+{ 222 M

(Paz)Z/S s P 2

giw it 16;-:*$

P,
gis I

(P;LZ)IIS
242 Jn —

ZZ
«Slop(-2]"+ |

3 3

P
+16.l‘} —[exp(~2)}"+.. (39)

Substituting (36) into (29) and using only the first term
on the RHS of (39) (other terms will be considered
later) and the result {35), we obtain

X, ~ J daexp(—An)Jo(A€) di = & cos 8/p>.(40)
0

Equations (36) and (31) give

E,(A) = 02/3j2(P2?)*3, @n

Dividing (39) by j2(P+?)*/® and then summing it, we get

S exP(““n’?) Z Z
n;WSWeXP(“Z)+§Fexp(_2)‘

(42)
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When (42)is substituted in (30) with E, given by (41), it
becomes

* n?
exp(—4in) + ——exp(
L [8) 8 i J,(5¢) di

NS ] N
"?{ : +¢(‘“(¢2+,72)1/2)1

= Jsin? 0 cos Bp?/8. (43)

When equation (12) is expressed in terms of Oseen’s
variables defined by (15) and is compared with (43), we
find

H,

1R

and
W, = (sin? O cos B/8)(r — 1/r)%. (44)
(iv) Higher approximation
Now that the Stokes solution T, (10) and /, (44) has
been obtained, it will be shown how a knowledge of the
Oseen solution x, (29) enables one to calculate the
next higher Stokes approximation T;. From (2), we get

P oy, 0T, oy, T,
Vi = -5 | 0L 70
2 [0r 00 86 or ] 4)
whose solution, (only particular integral ) satisfying (5)
is
P(5cos®8—3cos 0)

Ty(r,0) =
ar.6) 240r°
x [r7—3r% +4r* +3r* —12r? 4+ 10r - 3]
Pcosd
Coss[ 12r7 = 24r° +12r* 4+ 4r +24r* — 4],
240r
(46)
or

P(5cos®*8—3cos )

L0 = ~480r°
x[r7—=3r> =2r* 4+ 3r> + 6r* — 6.875r + 1.5]
Pcos @ s 4 3 2
— 430, e [— 1277 =247 — 6r* +4r°* — 12r? + 2].

(47)

Equation (46)is the solution satisfying T, = Oatr = 1,
i.e. for isothermal sphere and (47) satisfies 67,/0r = 0
at r = 1, true for the thermally insulated sphere. If we
can show that the remaining terms in equation (39) for
x, represent the highest order terms in equation (46)
and (47),1.e.

_OP(5cos*8—~3cosh) , N dPcost ,
240 ’ 20

then we are justified in neglecting the complementary
part of the solution of (45) and (46) and (47) represents
the next approximation. Equation (39) gives

(48)

3
Y exp(~a,n) = 3exp(—Ain)

n=1

n

[
{ A3+16/12+48,J35PCXP( )+ ... (49)
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The first term on the RHS of (49) has already been
considered in (40). From (29) and (49), we obtain

.| 'z o
~ —P§
* [ [16/13 TR
xexp(—Ain)Jo(AE) da. (50)
The third integral on the RHS of equation (50) can be
evaluated [see equation (35)]

J exp(—An)Jo(d)ds = T, (51)

0 (s E+n) P
The existence of the first two integrals of (49)is justified
with the help of the theory of distributions and is
evaluated according to the generalized Fourier trans-
form technique (Lighthill [19]). Integrating by parts,
we get

© ds
I= j exp(—2)Jo(28) S5
1 o0

- [—zexp(~lf1)‘lo(}~~f)—l

© |
+ [_ =[—nexp(=7in)Jo(i)

—Eexp(—in)J (A&)] da (52)
From (52), it follows

® 11
f_ [/—2 + ﬂ exp(—An)Jo(AE)dA

« di
= —ij CXP(~/~'1)11()~5)7' (53)
We know (See Gradshteyn and Ryzhik [18])
@© . d; 2+ 2\1/2 _
J exp (=) () 5 = e BEYY
0 ~

With the help of equations (51)-(54), it follows
considering the relevant terms

X, =~ —(8p?cos® 0/48)+dp?cos §/16.  (55)

It is, thus, shown that subsequent terms can be
accomodated satisfactorily within the scheme adop-
ted.

4. DISCUSSION OF RESULTS

For the isothermal sphere (6 = —1), the stream
function y (44) and the velacity components v, and v,

become
W = —(Gsin? 0 cos 6/8r2)(r* —1)? (56)
v, = —G(3cos? 0 —1)(1~1/r?)?/8, (57)
v, = — (G sin 0 cos 6/4)(1 — 1/*). (58)

From (57), it follows that at § = 0, v, is negative and at
8 = n/2, v, is positive. It changes sign at cos § = 1/\/3,
i.e. at 8 = 54.4°. Thus for this case inflow takes place at
the pole (8 =0) and changes into outflow at the
equator (6 = n/2). Streamlines are shown graphically
in the first quadrant of Fig. 1. These are qualitatively
similar to Fig. 6, s = oo of Eichhorn et al. [11].

The temperature distribution is given by the equa-
tions (10) and (46) (A =1, § = —1). Isotherms are
plotted in Fig. 2.
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F1G. 1. 1.Streamlines in an axial plane (i) for isothermal
sphere in quadrant I and (ii) for thermally insulated spherein
quadrant IL.
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FIG. 2. Isotherms for the case of isothermal sphere PG?

= 0.5625.
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FIG. 3. Isotherms for the case of thermally insulated sphere
PG? = 0.5625.

In this case since the upper hemispherical surface (9
=0 to 8 =n/2) is at a lower temperature than the
surrounding fluid, heat is transfered from the fluid to
the sphere. The amount of heat absorbed by the upper
hemisphere is given by

8=n/2 a
Qu=2kna2j sinO(gl,) 46 (59)

0=0 or
dT, 13PG?
= 22 = —_ s
kna (dy’ )[3 D) ] (60)

Similarly we can calculate the amount of heat rejected
by the lower hemisphere @, The RHS of (59) when
integrated within the limits from f = n/210 0 = = gives
Q, = —kna®. (8T,,/2y') (3-13PG?/32). Thus we find Q,
= —Q,, i.e. the sphere absorbs heat at the top and
rejectsit at the bottom in equal amount, as observed by
Eichhorn et al. [11].

In the case of the thermally insulated sphere (6
= 0.5) the stream function and velocity components
are just (—0.5) times equations (56), (67) and (58).
Hence all qualitative conclusions from the earlier
equations also apply to this case but with senses
reversed. Streamlines are sketched in quadrant II of
Fig. 1 and these are similar to the flow about a
stationary sphere in a rotating fluid (Singh [12]). The

isotherms for this case are plotted in Fig. 3. Since
nature of the flow lines as shown in Fig. 1 are in
agreement with those for the flow due to a sphere
rotating in a fluid at rest and the flow about a
stationary sphere in a rotating fluid, we conclude that
stratified and rotating flows are analogous (see Yih
[13] and Veronis [14]).
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CONVECTION LIBRE D'UNE SPHERE DANS UN FLUIDE
LEGEREMENT STRATIFIE THERMIQUEMENT

Résumé—On considére Pécoulement permanent et axisymétrique d’un fluide visqueux et stratifié verticale-
ment autour d’une sphére fixe, dans un champ de gravité uniforme. On obtient des solutions analytiques
par la technique des perturbations, valable pour de petits nombres de Grashof (modifiés). Deux cas sont
considérés selon que la sphére soit athermane ou que la température de sa surface soit constante et égale
a celle du fluide situé au plan diamétral. Les lignes de courant sont représentées graphiquement dans un
plan axial, 4 proximité de la sphére. On trouve que pour la sphére athermane, I’¢coulement est semblable
a celui autour d’une sphére fixe dans un fluide en rotation: écoulement rentrant prés de I'équateur et
écoulement fuyant aux poles, la transition apparaissant 4 un angle de 34,5° & partir des poles. Pour la
sphére isotherme, les lignes de courant sont semblables a celles d’un fluide au repos autour d’une
sphére tournante.

FREIE KONVEKTION UM EINE KUGEL IN EINEM THERMISCH
SCHWACH GESCHICHTETEN FLUID

Zusammenfassung—Es wird die stationire, achsensymmetrische Strémung eines vertikal geschichteten
ziihen Fluides um eine feststehende Kugel in einem einheitlichen Gravitationsfeld betrachtet. Analytische
Lésungen werden mit Hilfe der singuléren Perturbationstechnik erhalten, welche fiir kleine (modifizierte)
Grashof-Zahlen giiltig ist. Es werden zwei Fille betrachtet, die adiabate Kugel und die Kugel konstanter
Oberflidchentemperatur (entsprechend der Fluidtemperatur in Aquatorebene). Die Stromlinien der kugel-
nahen Strémung werden in einer axialen Ebene grafisch dargestellt. Die Strémung um die adiabate Kugel
entsprach derjenigen eines rotierenden Fluides um eine stationire Kugel mit Zustrdmung am Aquator und
Abstromung an den Polen; der Umschiag lag bei einem vom Pol aus gemessenen Winkel von 54,5°. Fiir den
Fall der isothermen Kugel sind die Stromlinien dhnlich denjenigen um eine gleichférmig rotierende Kugel in
einem ruhenden Fluid.

CBOBOJHASI KOHBEKLIMSI OT COEPBI, HAXOOAIMENCA B TEPMUYECKU
CJIABO CTPATUOULIMUPOBAHHOM XXUJKOCTH

Anmwnoramms — PaccMaTpHBaercs CTalHOHAPDHOE OCECHMMETPHYHOE TEYEHHE CTPaTHOHLMPOBAHHON
[0 BEPTHKAJIH BA3KOW KHAKOCTH Hal cdepoli B OAHOPOAHOM MoJe TsvkecTH. C IMOMOIIBIO MeTOAa
CHHI'YJIAPHBIX BO3MYILEHHH, CIIpaBeUIHBOTO NpH HeGonblnx (MoORUUMPOBaHHBIX) YHcHax I'pac-
roda, moJTy4eHs! aHATHTHYECKHE pelleRus. PaccMaTpHBaloTCs B4 ciyyas: xoraa cdepa TepMHYECKH
H30JIAPOBaHa H KOrla TEMMNEpaTypa ee MOBEPXHOCTH NOANEPXHUBAETCH MOCTOAHHON W PaBHOM TeM-
nepaType XUAKOCTH B THAMETPaJIbHOM MI0CKOCTH. [IpencTaBnens! JMHUH TOKA B OCEBOM NIOCKOCTH
63K cheprl. HaiineHo, 4To B cliyyae TepMHYECKH WM30JIMPOBAHHON cdepbl TeyeHHe NomoGHO
TIOTOKY, OMBIBAIOLIIEMY HENONBIKHY!O chepy BO BpALIarOLIEHCA XHUIKOCTH, T. €. MPHTOK Y 3KBATOpa
MpEBPAIlAeTCA B OTTOK y MONIOCOB, MPHYEM 3TOT MEPEXOX MPOMCXOAMT mojd yriom 54,5°, orcum-
THIBAEMBIM OT MOJFOCOB. [ M30TepMHuecKo# cdepbl MHHUM TOKA MONOGHBI JMHMIM TOKa NS
chepbl, paBHOMEPHO BpaluafoLLIeHCs B NOKOALIEHCS KHIKOCTH,



